Temporal trends in the incidence of molecular subtypes of breast cancer

Jonine D. Figueroa, Ph.D., M.P.H.

Epidemiology: Health data science

- Study of the distribution and determinants of health and disease
- All findings must relate to a defined population
- Study designs
 - Descriptive (Ecologic; e.g. cancer incidence and mortality rates)
 - Analytic (Case-control, cohort; e.g. mobile phone use and brain cancer)
 - Interventional (Random control trial e.g. of tamoxifen vs aromatase inhibitors and breast cancer recurrence)

Molecular epidemiology

Estimated Age-standardized Incidence Rate per 100,000, Breast Cancer, All Ages, GLOBOCAN 2012

Source: GLOBOCAN 2012 (IARC)

Natural history of breast cancer: transformation of the TDLU

Hormone hypothesis: Oestrogen and breast cancer

1896 1958 1968 1971 1973 1998

Sir George Beatson-Observation of regression of breast cancer after oophorectomy

Elwood Jensen
1958- discovers
estrogen.
1968- discovers
estrogen receptor
1971- ER rich breast
cancers respond
better to endocrine
ablation

Tamoxifen and breast cancer treatment.

EBCTCG Tamoxifen for early breast cancer: an overview of the randomised trials. *Lancet*, **35 1**: 1451-1467,

Multiple factors affect breast cancer risk

Selected factors associated with breast cancer by ER status

Exposure	ER+	ER-
Younger age at menarche	++	++
Multiparity	-	+
Older age at first birth	++	unknown
Breastfeeding	-	-
Older age at menopause	++	+
Obesity		
Premenopausal	-	+
Postmenopausal	+	unknown
Family history of bc	+++	+++
HRT	++	unknown

+++ consistent evidence of a positive association, ++ probable positive association, + possible positive association. Minuses indicate similar consistency of inverse associations. Colditz et al (2004), Ma et al (2006), Brinton et al (2017)

- Reproductive factors are more consistently associated with ER+
- Fewer factors found for ER- tumours
- Risk factors association with distinct subtypes not fully understood

Women's Health Initiative investigating hormone replacement therapy (HRT) finds significant increased breast cancer risk

Source: Women's Health Study (United States)

JAMA 2002; 288:321-33.

Million women's study and HRT use and breast cancer risk

Hormone replacement therapy and cancer risk

HORMONE REPLACEMENT THERAPY (HRT) – BENEFITS AND RISKS

HRT IS STILL AN EFFECTIVE SHORT-TERM TREATMENT FOR MENOPAUSAL SYMPTOMS, BUT HAS RISKS AS WELL AS BENEFITS

ARTICLE

Breast Cancer Incidence, 1980–2006: Combined Roles of Menopausal Hormone Therapy, Screening Mammography, and Estrogen Receptor Status

Andrew G. Glass, James V. Lacey Jr, J. Daniel Carreon, Robert N. Hoover

- □ Don Berry and Peter Ravdin: 'An anomalous finding is the 50% decrease in the incidence of ER-cancers from 2002-2006, ... possibly due to a statistical fluctuation' (JNCI 99: 1152-61, 2007)
- Validate in other datasets

Age-incidence rates and etiologic heterogeneity Denmark and the US

Figure 1. Longitudinal fitted age at onset curve (a) and age-standardized incidence rates (b) by estrogen receptor (ER)-positive and -negative expression. The fitted age at onset curve provides a summary measure of the longitudinal age-specific incidence by birth cohort and is adjusted for period and cohort effects.

Temporal trends of molecular subtypes of breast cancer in Scotland

Eve Van Investigations

- Scotland unique in the UK as ER data collected since 1997present with good coverage (e.g. England started collection from 2009)
- With access to other electronic medical records an important resource to understand trends of molecular subtypes of breast cancer

Age-standardized incidence rates in Scotland from 1980-2005

Figure: Age-standardised incidence of invasive breast cancer by age-group in Scottish women (1980–2005), and numbers of dispensed items of HRT and raloxifene (1993–2005)

Within each age-group, incidences of breast cancer have been age-standardised to the European standard population.

Sharpe et al. Eur J Cancer, 2010

Age-standardized incidence rates by ER

Fig. 4 – (a) Fitted and actual age-standardised incidence rates of invasive breast cancer by oestrogen receptor status in Scottish women aged 50–64 years (1997–2005). (b) Fitted and actual age-standardised incidence rates of invasive breast cancer by oestrogen receptor status in Scottish women aged 65–74 wears (1997–2005).

Tumour characteristics for 73,827 cases registered in Scotland

	Total cases	ER +	ER-	ER unknown
Sample size	73827	56163 (76%)	11863 (16%)	5805 (8%)
% total cases	100	76.07	16.07	7.86
Median age				
category	60-64	60-64	55-59	70-74

- ER+ breast cancers are more common and diagnosed among women between age 60-64 years
- Relatively good completeness of data on ER (only 8% missing with later years (<5% missing 2008 on)

Tumour characteristics for 73,827 cases registered in Scotland

Variable	Category	ER+ (%)	ER- (%)	P
Menopause	<50	18.01	25.75	
	50+	81.99	74.25	<0.0001
Grade	Well differentiated/Moderately	61.58	17.00	
	Poorly	25.67	69.75	<0.0001
Method of detection	Clinical presentation	64.46	78.88	
	Screening examination	29.74	16.35	
	Other	4.50	3.12	<0.0001
Tumor size	<20mm	48.95	38.57	
	>20mm	31.98	42.50	<0.0001
Node status	Negative	52.53	51.72	
	Positive	30.80	35.02	<0.0001

Temporal trends of molecular subtypes of breast cancer in Scotland

- Age standardised incident rates (ASR) by ER status corrected for ER unknown (Anderson JNCI 2011 and IJE 2013)
- Linear trends by ER summarised by annual percentage change of ASR, calculated using a weighted loglinear regression assuming a Poisson distribution (Anderson JNCI 2011 and IJE 2013)

Local drifts = generational or birth-cohort effect

- ER positive breast cancers increasing among older women (60-70 years). Possible factors could be, obesity, reproductive patterns, screening)
- ER negative breast cancers decreasing among younger women (40-60). Possibly due to changes in reproductive patterns.
- Screening age 50-70 every 3 years participation >70%

Summary of temporal trends of breast cancer

EP-nositivo

		EK-positive EK-negative		
Country	Years	Annual % Change	Annual % Change	
USA	1992-2008	0.1%	-1.9%	
Denmark	1993-2010	3.0%	-2.1%	
Ireland	2004-2013	2.2%	-3.4%	
Scotland	1997-2014	1.4%	-1.5%	

- Variation in the increase of ER+ breast cancers overtime across the four countries, but generally, its increasing.
- ER- breast cancers are consistently decreasing across the cancer registries. Whether declines are similar for basal vs HER2 enriched tumours is not known.

Temporal trends in birth rates in UK

Prevalence of obesity in Scotland 1995-2010

Obesity increased from 17% - 27% from 1995-2010 among adults 16-64

How can obesity influence breast cancer?

Key T. Steroids 2014

Molecular portraits of breast cancer

mRNA expression defined

Perou et al. (2000) Nature

C Curtis *et al. Nature* **000**, 1-7 (2012) doi:10.1038/nature10983

Integrative Omics Analysis with Epidemiologic Data

12 Tissue of Origin Sites Translate into 11 COCA Subtypes

TCGA Cell 158:929-944 (2014); https://www.synapse.org/#!Synapse:syn2487022

Rates of molecular subtypes of breast cancer over time in Scotland

 Determine possible aetiologic reasons for changes in ER+/- breast cancers over time through linkage with electronic databases including maternity (Ines Mesa-Eguiagaray)

- Determine temporal trends in mortality by ER status (Ines Mesa-Eguiagaray)
- Determine retrospectively the trends of contemporary profiled portraits of breast cancers using archival materials from the tissue repositories of Scotland

Acknowledgements

University of Edinburgh

Mark Arends

David Cameron

Mike Dixon

Jeremy Thomas

Andrew Sims

<u>University of Dundee</u>

Andrew Evans
Patsy Whelehan
Sarah Vinnicombe

Scottish Cancer Registry

David Brewster Andrew Deas **NCI**

William Anderson Phillip Rosenberg Gretchen Gierach

MRC Biostatistics Unit

Sheila Bird

Funding

Carnegie Trust
National Cancer Institute (USA)
MRC Proximity to Discovery

