

Update on Digital Pathology Scottish Association of Histotechnology

Dr Gareth Bryson
Head of Service for Pathology
National Clinical Lead for Digital Pathology
Greater Glasgow and Clyde
6th June 2019

Digital Pathology in Scotland

- Review the Digital Pathology
 Pilot and share lessons learned
- 2. Look forward to what is next for GGC
- 3. Consider the landscape across Scotland

Aims of the Pilot

- Assess the technical impact of digitization and reliability of equipment
- Assess digital pathology in out NHS environment particularly eHealth teams and IT infrastructure
- Collect some data to assist with building a business case
- Assess the feasibility of retraining in digital pathology for reporting
- Test some possible use cases
- A stepping stone to full digitization

The bones

- 1 Philips UFS Scanner
- 8 Consultant users and workstations
- Server and storage for 12 months

 Aim to validate all users, scan and report 10% of our work in 12 months

Achievments

- 7/8 consultants validated and using the system for most of their routine work
- 15597/140167 requests scanned 11.1%
- 80000 slides scanned
- 100 TB data generated

Lessons

- Integration
- eHealth
- Technical
- Equipment
- Data
- People

Integration

- IT integration to our existing systems is difficult
- Integration into lab systems is also difficult (especially in a pilot setting)

www.nhsqqc.orq.uk

eHealth

- Very eHealth dependent
 - Server infrastructure
 - Local network speed (1GB connection)
 - Workstation builds
 - Peripherals
 - Responsibility for success

Technical

- Barcodes/tracking
- Extra step
- Quality
- Section thickness
- Cleanliness
- Workflow

Equipment

Scanner

- Reliable
- Precision
- Lens contamination

Monitors

- Number of pixels determines field of view
- Minimum requirement is 27 inch 4MP
- High luminance required (at least 300 cd/m2)
- High quality essential to meet efficiencies

Data issues

- Ran out of data storage at 7 months
- Average image is 1.2 GB (estimate 650 MB)
- Data retention policy
- Image data storage
- Network speed, bandwidth and usage

Data retention policy

- How long to keep data
- In what format
- Layers/compression
- Accessibility
- Use for R+D
- Needs clinical leadership

Image data storage

- Amount of data
- 1.2 GB per slide
- NHS Scotland circa 2.5 PB per year (for 10 years)
- Single national store or local storage
- Storage technology
 - Tape
 - Disk
 - Cloud

Image data storage

National data store – V1 - Centralised

National data store – V2 - Federated

Server

Image Data

Archive data

Site 1

Server

Image Data

Archive data

Site 3

Portal Server

National 'Archive'

Server

Image Data

Archive data

Site 4

Site 2

Server

Image Data

Archive data

Delivering better health

www.nhsggc.org.uk

Archive data

Online data

Data store model comparison

Centralised

- Simplicity
- Security??
- Ease of migration/conversion
- Accessibility for research
- High impact on network infrastructure

Federated

- Lower network pressure (particularly upstream)
- Ease of accessibility of local data
- Data governance
- Scalable
- Less central control of quality
- More complicated access

People

- We consider that all pathologists can be retrained to digital for the majority of use cases (over 95%) with good system design
- Some will need more time and encouragement to adapt
- Transition will need to be phased
- Revealed enthusiasm and commitment from all levels of technical staff

Pilot Summary

- Overall success
- Some unpredicted challenges revealed
- Most issues resolved

The next phase

- UK Gov Life Science Strategy
- Innovate UK Competition
- June/July 2018

Blog

Innovate UK

Organisations: Innovate UK

automating and digitising pathology

Unlocking the power of medical images with AI for patient benefit and economic growth

Dr Penny Wilson, 30 July 2018 - AI & Data Economy, artificial intelligence, Early Diagnosis & Precisions Medicines, Industrial strategy challenge fund, Leading edge healthcare, Precision medicine

Artificial Intelligence in healthcare isn't new

Delivering better health

www.nhsggc.org.uk

- The concept of moving work to areas with spare capacity is flawed as NO department has spare capacity
- Need for additional tools to significantly increase capacity
- The need for Artificial Intelligence

- 1. Decrease demand
- 2. Replace the pathologist for simple tasks
- 3. Augment the pathologist for complex/difficult tasks

Need to do all three!

Decrease Demand

- Example NHS GGC received 5786
 Endometrial biopsies in 2017
 - 3% Malignant
 - 1.5% Atypical
 - 95% Benign
- Little benefit to the patient of pathology on these samples
- Use AI to identify the patients who can be safely not biopsied

Replace the Pathologist for Simple Tasks

- Automated analysis of images
 - Normal colon
 - Normal duodenum
- Automated triage and escalation of suspicious images
- Automated report generation

Delivering better health

- Image analysis
 - More reliable scoring/counting/measuring
 - ER/PR
 - Ki67
 - ICC/FISH
 - PDL1

Multi-stranded diagnostic data

- 1. Pathology
- 2. Radiology
- 3. Genomics
- 4. Transcriptomics
- 5. Proteomics

Shift in Focus from *Disciplines* to (*Precision*) *Diagnostics*

- What is the Gold Standard?
 - Pathology
 - Molecular profiling
 - Other

Endometrial cancer survival by type and stage

Endometrial cancer survival by molecular subtype

The missing piece of the jigsaw

DATA

AI

Outcome as the Gold Standard

- Short term
 - Biopsy vs resection
- Medium term
 - Pathology vs response/recurrence
- Long term
 - Pathology vs survival

Digital Pathology

- 1. Digital pathology is a key method of adding key contextual and phenotypic information to the genomic and other omic data.
- 2. Pathology data items
- 3. Image information as data

Future Diagnostics

- Integration of diverse data sources by AI
 - Pathology Report data
 - Pathology pixel data
 - Molecular data
 - Clinical data
 - Radiology data
- Use of machine learning to compare this integrated data to patient outcomes and identify patterns for predicting outcome of future patient cohorts.

PHILIPS

- Working with Academic and Industry partners to develop novel Artificial Intelligence tools.
- Improving accuracy and efficiency of tissue diagnostics by integrating computer image analysis, deep learning and NHS Pathologist expertise.
- Funded through the Industrial Strategy Challenge fund of

Innovate UK

PHILIPS

- Joint radiology and pathology consortium
- Philips and Canon industry partners
- £10 M Grant
- £5.5 M Industrial contribution
- NHS GGC Pathology £3.5 M

WP7 – Fully digitize NHS GGC Pathology

- Fully digitise NHS GGC Pathology over 18-24 months
- Equipment required
 - 5 UFS Scanners
 - 1 UVS Scanner
 - 70+ workstations and monitors
 - Data storage
 - Staff for transition

WP7 – Fully digitize NHS GGC Pathology

- Starts 12th June with delivery of 3 additional UFS scanners and 15 workstations
- Aim to be digitising 50% in the next 12 months
- Validating groups of pathologists from early autumn 2019
- Redesigning lab workflow and trying to go paperless

WP8 – Build a research ready data lake

Working with Edinburgh Parallel
 Computing Centre and Glencoe Software
 to build a research ready data lake for UK
 SME businesses and academic institutions

- Will be populated with data from NHS GGC initially
- NHS GGC image data also being shared with Philips

WP9 – Exemplar projects in

Endometrial and Cervical Biopsies

- Aim to use deep learning to build algorithms which can identify common patterns in endometrial and cervical biopsies
- Partnered with University of St Andrews
- For simple cases, significant proportion of pathologists time is generating and authorising the report

WP9 – Exemplar projects in Endometrial and Cervical Biopsies

Delivering better health

www.nhsggc.org.uk

Scotland and the future

Where are we?

- Agreements for roll out in GGC and A&A
- Commitment in Grampian
- Pilots in North and Lothian

- Significant investment in laboratories and equipment over the last 10 years
- Investment in IT infrastructure and information management systems is lagging behind
- Attempting to provide a 21st Century service with 20th Century IT

Antiquated IT

System Challenges in Pathology

- Reliance of paper (ordering, lab worksheets)
- Reports are made up of multiple strands of information generated at distinct times across several days
- Difficult integration of voice recognition
- Need for structured data reports to improve quality and consistency

Innovate to turn these Challenges to Allenges to and Clyde opportunity

- Aim to solve many of our challenges by developing a (National) Reporting System for **Pathology**
- Use Digital Pathology Deployment as the lever for change

Delivering better health

Delivering better health

Thank you